Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J. physiol. biochem ; 72(4): 803-812, dic. 2016. tab, graf, ilus
Artigo em Inglês | IBECS | ID: ibc-168385

RESUMO

Increased incidence of chronic kidney disease (CKD) with consecutive progression to end-stage renal disease represents a significant burden to healthcare systems. Renal tubulointerstitial fibrosis (TIF) is a classical hallmark of CKD and is well correlated with the loss of renal function. The bioactive lysophospholipid lysophosphatidic acid (LPA), acting through specific G-protein-coupled receptors, was previously shown to be involved in TIF development in a mouse model of unilateral ureteral obstruction. Here, we study the role of LPA in a mouse subjected to subtotal nephrectomy (SNx), a more chronic and progressive model of CKD. Five months after surgical nephron reduction, SNx mice showed massive albuminuria, extensive TIF, and glomerular hypertrophy when compared to sham-operated animals. Urinary and plasma levels of LPA were analyzed using liquid chromatography tandem mass spectrometry. LPA was significantly increased in SNx urine, not in plasma, and was significantly correlated with albuminuria and TIF. Moreover, SNx mice showed significant downregulation in the renal expression of lipid phosphate phosphohydrolases (LPP1, 2, and 3) that might be involved in reduced LPA bioavailability through dephosphorylation. We concluded that SNx increases urinary LPA through a mechanism that could involve co-excretion of plasma LPA with albumin associated with a reduction of its catabolism in the kidney. Because of the previously demonstrated profibrotic activity of LPA, the association of urinary LPA with TIF suggests the potential involvement of LPA in the development of advanced CKD in the SNx mouse model. Targeting LPA metabolism might represent an interesting approach in CKD treatment (AU)


No disponible


Assuntos
Animais , Feminino , Camundongos , Albuminúria/urina , Rim/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Insuficiência Renal Crônica/urina , Lisofosfolipídeos/urina , Nefrite Intersticial/urina , Fosfatidato Fosfatase/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Fibrose , Fosforilação , Expressão Gênica , Nefrectomia
2.
J Physiol Biochem ; 72(4): 803-812, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27637780

RESUMO

Increased incidence of chronic kidney disease (CKD) with consecutive progression to end-stage renal disease represents a significant burden to healthcare systems. Renal tubulointerstitial fibrosis (TIF) is a classical hallmark of CKD and is well correlated with the loss of renal function. The bioactive lysophospholipid lysophosphatidic acid (LPA), acting through specific G-protein-coupled receptors, was previously shown to be involved in TIF development in a mouse model of unilateral ureteral obstruction. Here, we study the role of LPA in a mouse subjected to subtotal nephrectomy (SNx), a more chronic and progressive model of CKD. Five months after surgical nephron reduction, SNx mice showed massive albuminuria, extensive TIF, and glomerular hypertrophy when compared to sham-operated animals. Urinary and plasma levels of LPA were analyzed using liquid chromatography tandem mass spectrometry. LPA was significantly increased in SNx urine, not in plasma, and was significantly correlated with albuminuria and TIF. Moreover, SNx mice showed significant downregulation in the renal expression of lipid phosphate phosphohydrolases (LPP1, 2, and 3) that might be involved in reduced LPA bioavailability through dephosphorylation. We concluded that SNx increases urinary LPA through a mechanism that could involve co-excretion of plasma LPA with albumin associated with a reduction of its catabolism in the kidney. Because of the previously demonstrated profibrotic activity of LPA, the association of urinary LPA with TIF suggests the potential involvement of LPA in the development of advanced CKD in the SNx mouse model. Targeting LPA metabolism might represent an interesting approach in CKD treatment.


Assuntos
Albuminúria/urina , Rim/metabolismo , Lisofosfolipídeos/urina , Nefrite Intersticial/urina , Proteínas do Tecido Nervoso/metabolismo , Fosfatidato Fosfatase/metabolismo , Insuficiência Renal Crônica/urina , Albuminúria/genética , Albuminúria/patologia , Albuminúria/fisiopatologia , Animais , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Fibrose , Expressão Gênica , Rim/patologia , Rim/fisiopatologia , Lisofosfolipídeos/sangue , Camundongos , Nefrectomia , Nefrite Intersticial/genética , Nefrite Intersticial/patologia , Nefrite Intersticial/fisiopatologia , Proteínas do Tecido Nervoso/genética , Fosfatidato Fosfatase/genética , Fosforilação , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...